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Abstract—Hoax calls annually cost law enforcement and secu-
rity agencies over a billion dollars, and sometimes lives. Bogus
bomb threats, “swatting” calls to the police, hoax calls to the
coast guard etc. cause these agencies to respond, deploying
personnel and resources needlessly. The response itself could
cause direct danger to innocent citizens, while also drawing
resources away from genuine emergencies that could otherwise
have been expeditiously attended to. Law enforcement agencies
would hence benefit greatly from technologies that could assist
them in identifying the circumstances of a hoax call, or identifying
the hoax callers themselves. These could lead to more informed
responses to hoax calls, or to the arrest of the perpetrators. In this
paper we describe technologies to profile hoax callers. Profiling
in this context refers to the estimation of the speaker’s personal
traits, and of their physical surroundings, from their voice. This
is a difficult task, particularly because the hoax calls are often
very short, degraded in audio quality, and highly dramatized,
with the callers attempting to disguise their voices to prevent
identification. We present aspects of current technology in various
fields that we have applied to this problem, and the challenges
that remain in formulating reliable solutions.

I. INTRODUCTION

Hoax calls constitute a special category of voice-based
crimes that are committed to elicit serious, costly and some-
times deadly responses from security, emergency and law-
enforcement agencies. The people who make these calls may
have different motivations, ranging from mental issues such
as malicious pleasure and societal hatred to carefully planned
decoy activities, but in most cases they are fully aware of the
consequences of their actions, and the dangers posed to the
community. Hoax calls are largely anonymous calls, and the
perpetrators take care to not reveal any clue of their identity.
In these voice-based crimes, the recorded voice of the speaker
is often the only available evidence.

This paper addresses the problem of using such voice
evidence to generate a detailed description, or a profile, of
the speaker through analysis of the speaker’s voice. The
information derived falls under two broad categories: a) Bio-
relevant parameters, or bio-parameters, of the speaker and b)
Environmental parameters. The set of bio-relevant paramters
includes, but is not limited to Physical parameters: height,
weight, body-shape, facial structure; Physiological parame-
ters: age, presence or absence of medications in the body;
Behavioral parameters: dominance, leadership; Medical pa-
rameters: state of the speaker’s physcial and mental health,
presence of particular disease(s) and disabilities; Demographic
parameters: race, geographical origins, level of education;
Sociological parameters: social status, income etc. The set of

environmental parameters includes details of the location of
the speaker, objects surrounding the person, and the devices
used by the person at the time of speaking.

Prior studies in multiple fields have shown that human voice
carries traces of the speaker’s bio-parameters. The general, as
yet unproven, hypothesis is that voice carries the biomarkers of
every parameter that influences the speaker’s biological system
and psychological state. In addition, once the voice signal is
captured, traces and influences of the speaker’s environment
are also captured alongwith it. This paper is intended to be
a brief exposition of the mechanisms for profiling, i.e. for
the identification, extraction and interpretation of these traces,
that we have devised lately, and of the scientific challenges
that remain to be addressed.

II. THE COMPLEXITY OF HOAX CALLS

In contrast to clean voice signals captured in studio-quality
environments, even the shortest hoax calls comprising just
one word such as “Help” or “Mayday” can be extremely
complex in the spectral domain. There are two sources of this
complexity. One is introduced by the vocal maneuvers of hoax
callers in attempts to simulate panic or hide their identity (or
both), and the second relates to losses incurred in the process
of recording and transmission of the acoustic signal. In this
section we explain the nature of these complexities briefly.

A. Vocal maneuvers in hoax calls

It is our (interesting) observation from a study of many
real cases that hoax callers often modify their natural voice,
sometimes in extreme ways. Although probably not aware of
the biometric potential of their voice, they instinctively attempt
to hide their identity by disguising it. In some cases such as
false bomb threats and public safety related calls, they may use
external devices that distort their voice but as long as the voice
remains intelligible to the intended victim(s), the hoax callers
achieve their goals. In other cases they try to sound like a real
(albeit fictitious) person other than themselves. This is because
their goal is to induce the emergency services to respond, and
this may not be achieved if the voice quality itself causes the
response agencies to flag it as a hoax.

In a real emergency situation, the caller may be in physical
danger, and under extreme stress. The caller may be scream-
ing, shouting, crying or expressing extreme emotion, and these
factors result in highly distorted voice signals. In a hoax call,
the distress may be simulated. Nonetheless, the effect is the
same on the voice signal in terms of the degree of distortion.



Fig. 1 shows an example where the same person made hoax
calls on two different occasions, pretending to be a curious
observer in one after having made a hoax call, and simulating
panic in his voice in the other. The spectral characteristics
observed are very different in each case. Profiling algorithms
must be agnostic to such high degrees of variation in the
human voice. The problem is that so far, there is no clear
thesis on the variations of human voice and their characteristic
properties. Observation of several pairs of such calls reveals
that different people may simulate panic in different ways.
We are in the process of building our understanding of this
phenomenon.

Fig. 1. Left: Narrowband spectrogram of a hoax caller speaking normally.
The spectrogram shows the logarithm of the energy at each frequency as
a function of time as a grey-scale map, with a cutoff at 100dB below peak
energy in any frame for clarity. Right: The word “Mayday” spoken five times
with increasing (fake) degree of panic by the same person in a highly noisy
transmission. The grey patches show noise in the signal.

B. Device and channel induced losses

Hoax calls are almost entirely wireless communications that
are transmitted over radio, telephone or internet channels. In
real emergencies, distress transmissions are made from more
than normally disturbed circumstances, and often contain high
levels of noise. In general, the audio quality of hoax calls is
also highly variable and poor. The callers are neither discern-
ing about the location of their call (which may be noisy), nor
of the devices they use to capture and transmit their voice,
which may be of poor quality. The transmission channels used
also employ lossy compression and coding/decoding schemes,
which are designed to roughly preserve the perceptual quality
of speech, but not necessarily the fidelity at all frequencies. In
addition, there may be channel distortions and other attenua-
tions introduced due to bad microphones, improper settings,
bad handling, reverberation and echo in the environment etc.
All of these factors cause the profiling-relevant information in
the acoustic signal to become more obscure and difficult to
extract reliably.

Fig. 2. Left: Spectral distortions introduced due to the transmission channel
and devices used. Aliasing severely obscures the information in the speech
regions. Data dropouts appear as vertical gaps in the spectrogram. Right:
Coding induced uncorrected amplitude modulation in the time domain signal
for the same recording.

The example in Fig. 2 is that of an unknown caller’s voice
transmitted over a VHF channel. It shows many different key

issues that appear in real hoax calls. Firstly, information above
4kHz is lost due to the coding scheme used. Information below
240Hz is completely cut off. In the speech regions of this
signal, the frequency aliasing introduced due to clipping in the
time domain smears the spectral patterns into regions where
there is really no information (below 240Hz and above 4kHz),
and also obscures much of the spectral patterns in between.
Note that the human vocal tract produces frequencies between
approximately 50 and 6800 Hz during normal speech. The
pitch or fundamental frequency of speech is around 120Hz for
men and 210Hz for women. This is completely removed by the
240Hz cutoff during transmission. In fact, the cutoff range of
240-4000Hz also removes information in higher frequencies
that is necessary for the disambiguation of many speech
sounds, and diminishes their potential for use in profiling.
Profiling must then be done using the remaining information,
which is attenuated differently for male and female voices due
to the inherent differences between them [1], [2].

Channel noise is visible in Fig. 2 as a combination of largely
diffuse random noise and clearly visible (almost) pure-tone
spectral components that are harmonics of a 123Hz tone, pre-
sumably due to the lack of suppression of CTCSS (Continuous
Tone Coded Squelch System) tones used by amateur VHF
and UHF equipment [3]. Note also the significant amplitude
modulation introduced in the signal waveform due to coding
issues. A closer study of hoax calls recordings reveals the
presence of several other types of problems such as data
dropouts, spectral holes, spectral smearing etc.

The challenge here is that current techniques that compen-
sate for these effects, introduce new artifacts that degrade the
speech signal itself. These techniques therefore cannot be used
for profiling as-is, and must be modified significantly.

III. DEDUCING BIO-RELEVANT PARAMETERS

Techniques that are successfully applied to do speaker
matching for speaker identification and verification are not
suitable for use in profiling for many reasons. Profiling is
not a problem of identification, verification or matching where
prior voice templates are available for comparison. Profiling
must often be done without the possibility of comparison –
a hoax call is received and we must generate a description
of the speaker from it by a direct analysis of the acoustic
signal. This of course does not exclude the possibility of
comparative profiling, where we use an existing database of
voices from people with known biometric parameters, and
assign the profile of the closest matching person to the hoax
caller.

A. Micro-articulometry

Our current approach to profiling falls under an area that we
designate as micro-articulometry. The term articulometry itself
conventionally refers to the measurement of the movements,
dimensions and positions of the articulators in the human vocal
tract during the process of speech production. We use it to
refer to the measurement of micro properties of automatically
extracted articulatory-phonetic units of speech. In other words,



the term refers to the fragmenting of speech into its consistent
compositional units, and measurement of their properties at
extremely fine levels in time, frequency and other domains.

In micro-articulometry, we measure these features in a man-
ner that they capture localized and consistently exhibited char-
acteristics of phonemes. These are typically the central cores
of each phoneme, since in continuous speech, the spectral
patterns at the extremities of each phoneme may be modified
by those of the previous and succeeding phoneme [4]. These
representative sub-phonetic regions are automatically extracted
using a state-of-art Hidden Markov Model based speech recog-
nition system that is specially trained with entropic constraints
to extract accurate sub-phonetic segmentations [5]. In a variant
of this, we also extract micro-features from the transition
regions between combinations of adjacent phonemes, e.g. in a
single-word “Mayday” call, we may extract the rise of pitch
in the transition between [M EY], and [D EY], rather than
from only the central regions of the sounds represented by M,
D and EY (we use capital-letter sysmbols to denote phonemes
throughout this paper). In the paragraphs below, we give some
examples of micro-features.

Fig. 3 shows an example of a micro-feature in the frequency
and time-frequency domains. The top panel of this figure is the
narrow-band spectrogram of a rendition of Popeye the Sailor
Man [6] by Jack Mercer. This was recorded in 1935, at a time
when there were few audio processing techniques available to
artificially render the unusual spectral characteristics seen in
the spectrogram. The voice actor had to actually produce the
sounds as seen in this figure. The spectrogram shows frequency
modulation on each harmonic clearly. This can be measured
via frequency demodulation techniques and is an example of
a micro-feature. In hoax calls that simulate panic, this kind
of modulation is often present. The lower panel of Fig. 3
shows a micro-feature in the time-frequency domain. This
is the bandwidth of each harmonic, and is outlined by fine
black contours (clearly visible on enlargement on-screen). We
see that the bandwidths are different for each harmonic. In
our experience, the bandwidths are very characteristic of each
speaker. We continue to investigate the full potential of this
new micro-feature.

Fig. 3. (a) Voice signal showing several micro characteristics

Fig. 4 shows a micro-feature in the time domain: the Voicing
Onset Time (VOT). This is relevant in phoneme combinations
of a plosive sound, such as T, P, D, B, G, K followed by a
voiced sound, such as a vowel. In the production of a plosive,
the vocal tract is closed at some location (such as the lips for a
P, and the palate for a K) and air pressure builds up behind the
location. This is then suddenly released, and the articulators
move to the configuration for the next sound. During the stop
and release phase of an unvoiced plosive sound, the vocal folds
do not vibrate. If the next sound is voiced, there is a time gap
between when the vocal folds are at rest, and when they begin
vibrating. This is usually in the order of milliseconds, and is

Fig. 4. Two instances of the word THREE spoken by a 9 year old boy from
Texas (source of data: [7]). Although the durations of the words are different,
the voicing onset time α remains the same. In practice, the VOT changes
within a small range around the mean for each speaker.

highly speaker dependent since the key factor that controls
this time interval is the inertia of the muscles that control the
speaker’s vocal folds. The speaker, even in the most extreme
forms of voice disguise, does not have voluntary control over
this inertia. For profiling, we derive a large number of other
such micro-features, which we do not list explicitly here. The
algorithms used to derive them are very specific to the feature
extracted. In each case, high-accuracy measurements of these
features is critical to the performance of prediction algorithms.
As a result, in addition to identifying features, significant effort
is also required to devise algorithms that can measure them
accurately. We use sophisticated algorithms based on high-
accuracy spectral analysis [8] and structured prediction [9] to
derive such micro-features, and continue to devise newer, more
accurate algorithms for their estimation.

1) Parameter prediction with microfeatures: Once the fea-
tures are derived, we use them to first identify the set of
articulatory-phonetic units that best predict the profile param-
eter to be estimated from those features, and subsequently use
this set to derive the final estimate of the parameter. We explain
this procedure in greater detail below.

Identifying the most predictive units: For the same pa-
rameter, the most predictive phonemes may be different for
different micro-features derived from the signal. These are
therefore learned separately for each micro-feature type. For
example, for the estimation of height, using high-resolution
robust linear cepstra as features and the publicly available
TIMIT [10] database, we find that the most predictive units
from a standard speech database are the vowels EY, AE and
IY. This result is shown in Fig. 5, and the procedure used to
obtain it, is outlined in [5].



Fig. 5. RMS error in inches of the predicted values of height for each
phoneme. This figure is reproduced from [5].

Our strategy takes into account the fact that the various
speaker parameters we wish to derive are not independent of
one another, and what we observe in the voice signal may
be the joint effect of many different parameters. Moreover,
the relationships are often not linear, and cannot be well
quantified through correlation analysis (which assume an un-
derlying linear relationship). We therefore employ an alternate
strategy to characterize the potentially non-linear statistical
relationships between acoustic features and body parameters
[5]. We train a non-parametric predictor that attempts to
predict the target parameter from collections of features.
The predictor is optimized though appropriate cross-validation
procedures to minimize over-fitting to the data. We then predict
the target parameter for a held-out data set. The correlation
between the predicted and true values of these parameters
provides quantitative evidence of the relationship between the
acoustic features and the predicted parameter. Based on these
measurements, we select the most predictive phoneme for the
parameter, given the feature type under consideration.

Estimating the profile parameters: To estimate a given
parameter, we use the same non-parametric models as in the
training stage, and the same corresponding features derived
from the segmented hoax call data, to generate predictions
from the set of most predictive units identified in the previous
step. Following this we use effective fusion strategies [11]
which we have recently shown to work well in multimedia
retrieval using audio tracks. In some cases, we average the
predictions obtained from all the instances to obtain a single
phoneme-specific prediction for the subject. The estimates
from all phonemes can also be combined using an inverse R2

weighted interpolation to obtain a single aggregate prediction
for the parameter. To comply with the Daubert criteria men-
tioned in Section V-A, we generate confidence values with
our estimates. Currently, we use the statistical correlations
observed between the parameter being estimated and the
corresponding features, to generate the confidence values.

B. Alternative approaches

Neural network approaches have been shown to be able
to automatically extract relevant features without resorting to
preconceived ideas of what feature(s) or feature-type(s) may
be important. This fact has lately been leveraged in various
tasks such as speech recognition and computer vision. They
have not been widely used for biometric characterizations from
voice primarily because they require large amounts of data to
train. Once such data are available, various neural network
formalisms can be investigated to directly learn relationships

between the basic spectral and other characterizations of the
speech signal and the relevant body parameters.

IV. DEDUCING THE SPEAKER’S PHYSICAL ENVIRONMENT

While each articulatory phonetic unit of speech is affected
differently by different bio-relevant parameters of the speaker,
the effect of environmental parameters is largely uniform
on the all the units. The problem of deriving environmental
factors from voice (or the acoustic signal it is embedded in) is
therefore not that of micro-articulometry, but of conventional
acoustic event and object detection. Accordingly, the features
we select for this part of the profiling are both micro- and
macro-level features. The techniques used largely do not
require the segmentation of speech into phonemes.

The physical environment can affect voice in two ways:
by affecting the human and causing changes in the voice
production process, and by causing changes in the voice after
it is produced. In this section we focus on the latter category
of changes, wherein the influence of the environment can
either be active, where new sounds from the environment
additively superimpose on the recorded voice signal, or it may
be passive, where the objects in the environment (or its state,
such as temperature), modify the voice signal. We describe
these influences briefly below.

A. Active elements profiling (AEP)

Active elements, or active environmental factors, are those
aspects of the environment that actively emit signals that
influence a sound recoding. Active factors are both natural
and man-made sound-emitting factors, such as traffic, wind,
birds, fans, air-conditioners etc., and signal modifying factors
such as Electric Network frequency (ENF) variations and other
electromagnetic disturbances that get recorded alongwith the
speaker’s voice. In most cases, these have characteristic sound
patterns or signatures that combine additively with a speaker’s
voice, and also get recorded alongwith the hoax caller’s voice.
Active factors are deduced by extracting the signatures of
these objects from the voice recording, and matching them
against the signatures of known objects, e.g. for the hoax calls
received from waterbound vessels, we study the signatures of
boat engines, helicopters and other maritime sound-emitting
objects. Our team collaborates directly with the U.S. Coast
Guard Research and Development Center and Coast Guard
Investigative Service to better understand typical maritime
environmental challenges.

Recognizing the signatures of sound emitting objects:
The best techniques for isolating the signatures of sound
emitting objects for speech signals are based on NMF-based
signal separation [12]–[14]. These techniques however work
best when examples of the sounds expected to be separated are
available. They also work best only for clean signals. Where
feasible, we use these techniques to separate the speech from
other sounds for identification. Where they are not feasible,
and for identification itself, we use bag-of-words based audio
event detection techniques [15]. These have been successful
in multiple contexts in multimedia applications.



For identification, our bag-of-words based object classifiers
are built using the sound examples collected under our Never
Ending Learning of Sound (NELS) project at Carnegie Mellon
University, which scours the web to automatedly identify and
collect examples of various sound categories. In most cases,
the actual detection of background sounds can be well per-
formed by simple Support Vector Machine classifiers. Often,
multiple sound emitting objects are present in the speaker’s
environment, and these must be disambiguated during the
classification process. We continue to work on this problem.

Locating speakers through ENF analysis: In USA, the
electric network frequency (ENF) is 60Hz. However, this is
not constant – depending on the overall electrical power load,
the actual frequency in fact varies continuously and randomly
between ∼57 and ∼63 Hz. These ENF variations are the same
across the entire grid and are constantly recorded by various
agencies. The ENF variations from the power lines around get
embedded in any audio signal that is generated or recorded by
a device that is plugged into a wall outlet, and although very
faint, can be extracted from the recorded signal. The sequence
of frequency patterns over the period of the recording are
often distinctive enough that a comparison with the grid ENF
fluctuations on record can reveal the exact time at which this
sequence occurred. ENF-based deductions have been used to
solve several cases in the UK, where the entire nation is on a
single grid. Even if there are multiple grids (as in the USA),
ENF patterns are sufficiently unique that both the grid and the
time can be determined. This can help pinpoint the location
of the recording to the region of a particular grid, and time
of the recording to within seconds. Also, the absence of ENF
signatures in the recording could mean that the device that
made the transmission was not plugged into a grid (as in a
vessel at sea or on the river, or a battery-operated device.

Note that active factors can sometimes modify the manner
in which humans produce voice [16], especially when the
environmental noise level exceeds 55dB SPL. We do not
address these changes in this paper, as the techniques we
would use in these situations would be the same as those used
for voice disguise.

B. Passive elements profiling (PEP)

Passive factors include transmission devices and channels
that can modify, attenuate and distort sound in characteristic
ways, but unlike ENF, without adding more information to
them. Passive factors also include objects that cause the reflec-
tion, refraction, diffraction, reverberation or echo of sound.

Deducing the speaker’s physical soundings through re-
verberation analysis Reverberation occurs when the source
of an acoustic signal is in the vicinity of surfaces that reflect
sound, such as walls in a room, glass panes etc. The sound
gets multiply reflected from these surfaces. In recorded signals,
these multiple reflections appear as delayed copies of the
original signal that are added on to the original signal.

In a recorded voice signal, reverberation causes spectral
smearing, where every frequency is extended in time beyond
the end of its production by the source. This is shown in the

TABLE I
ABSORPTION COEFFICIENTS FOR SOME CONSTRUCTION MATERIALS

Materials Coefficients for (Hz or CPS)
125 250 500 1000 2000 4000

Heavy glass .18 .06 .04 .03 .02 .02
Ordinary glass .35 .25 .18 .12 .07 .04
Concrete, Terrazzo,
marble or glazed tile

.01 .01 .02 .02 .02 .02

left panel in Fig. 6, where the horizontal extensions from each
harmonic of the spoken word are the spectral smear associated
with it.

The right panel in Fig. 6 shows a three-dimensional spec-
trographic visualization of the estimated “room impulse re-
sponse” of a typical room. It shows the magnitude of the
response at all frequencies between 0-8000Hz as a function
of time, in response to a hypothetical impulsive sound at time
t = 0. As we can see, the impulse response extends across all
frequencies with occasional impulsive peaks. The locations
of the peaks depend on the dimensions of the recording
space. The shape of the response across frequencies and the
reverberation time – the time taken for the response to fall
by 60dB – depend on the dimensions of the room and the
material composition of the reflecting surfaces. Analysis of the
room impulse response can hence reveal information about the
materials and dimensions of the recording enclosure [17].

The extraction of the actual response of the recording space
from a recording, however, remains an unsolved problem.
Approximations to it can nevertheless be obtained through
techniques such as non-negative spectral matrix factorization
[18]. The extracted room impulse response can be used to
estimate peaks in the reverberation, the frequency response,
and the reverberation time constant at different frequencies.
Combined with the known reflective properties of common
construction materials, e.g. as in (Table I), these enable us
to guess the dimensions and material composition of the
speaker’s physical surroundings. Absence of reverberation
indicates open space.

Fig. 6. Left: Spectrogram of the word “help” shouted in a room with a
glass wall 6 feet behind the speaker. Reverberation causes significant spectral
smearing, seen towards the right of the harmonics. Right: Room impulse
response estimated through de-convolutive factorization of a signal.

Deducing the specifications of the speaker’s equipment
Voices may be degraded or modified in different ways by
the devices used to transmit or record them. A measurement
of voice quality, which comprises multiple aspects of voice
[19] in the speech portions of the recording, and of the
characteristic instrument signatures in the non-speech portions



of any recording, can yield important information about the
instrumentation used to generate, transmit or record the voice.

V. CHALLENGES THAT REMAIN

None of the problems mentioned in this paper are fully
solved. In the following, we enumerate some selected chal-
lenges that we have not discussed in this paper.

1) Disambiguating the effects of all speaker parameters
on voice: Since a multitude of factors influence the
voice signal, it is important to devise techniques to
disambiguate their effects. The solutions would require
the parameters to be jointly estimated, for which accurate
algorithms must be designed.

2) Noise compensation for profiling: This includes deal-
ing with poor signal-to-noise ratios, clipping, distortion,
missing data or dropped data, compensation for rever-
beration effects etc. in a way that the profiling relevant
information in the acoustic signal is not compromised.

3) A better understanding of distressed speech: There
are subtle differences between real and simulated dis-
tress in human voice. Understanding these differences
will lead to better techniques to disambiguate between
an authentic call and a hoax call.

4) Age correction: Often, profiling must be done from
voice samples that have been recorded significantly ear-
lier in the past. Effective age-correcting mechanisms are
required to deduce the current bio-relevant parameters
of the speaker.

5) Voice disguise: Miscreants often disguise their voice as
mentioned earlier, sometimes using commercially avail-
able devices that modify pitch and de-identify speech in
other ways. The techniques for profiling must be made
agnostic to these.

6) Style recognition: Each person has an a characteristic
style of presentation, which generally remains the same
when the individual is in different states, e.g. sober,
intoxicated, or attempting disguise. In our observation,
hoax calls are no exception. Ways to quantify style must
be devised.

7) Accent recognition: Accent is a moving target. As peo-
ple mingle geographically, their accents become diffuse
and difficult to place. Traditional methods of accent
recognition are no longer useful in this rapidly changing
scenario. More realistic data needs to be obtained, and
better analysis techniques need to be devised.

8) Characterization of mental states induced by near-
term factors: Techniques must be devised for the char-
acterization of mental states that are specifically relevant
to profiling hoax callers. Examples include mental states
induced by intoxication, medications or recreational
drugs, emotions such as anger and behavioral patterns
such as lying, evasion, deception, malice etc.

A. Legal issues and mindfulness thereof

Hoax calls are federal crimes in USA. The criteria of
acceptability of our results must therefore be scientific and

legal. The latter are outlined by the (controversial) Daubert
and Fyre standards [20], [21] (depending on the state/region)
that define the acceptability of scientific analysis. According
to the Dec 1, 2011 amendment to the Daubert criteria, to be
acceptable in a court of law, scientific results must: a) be
based on sufficient facts or data, b) be a product of reliable
principles and methods, and c) the methods must be reliably
applied to the facts of the case. In compliance, we ensure that
our techniques are accompanied with quantitative measures of
confidence.
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