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Evolvability of Emerging Viruses
Donald S. Burke

NA viruses are, by several orders of magnitude, the most geneti-
cally labile “life forms” (15, 23). Mutation rates for RNA. viruses
are typically on the order of one error per 10,000 nucleotides repli-

- ®cated, compared to one per 10 million nucleotides for larger DNA-
based life forms like vertebrates (8) (Table 1.1). Since the average genome
lengrh of RNA viruses is only 10,000 nucleotides, and all are shorter than
40,000 nucleotides, almost all new viral RNA strands differ from their pat-
ent strand by one or more nucleotides. Indeed, the error rate of one muta-
tion per progeny genome poises RNA viruses at the edge of “error
catastrophe,” error rates so fast that genetic information degenerates into
replication incompetence. Viruses can also recombine with other related
viruses to effectively “shuffle” newly evolved genes. Recombination serves
both to hybridize highly fit variants and to replace defective and incompe-
tent genes. This general strategy of repeated iterations of random variation,
selection, and recombination between the best solutions (“most fit prog-
eny”) has been found to have widespread applications in problem solving,
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Table 1.1 Error rates and genome sizes of RNA viruses as compared to autonomous organisms

Genome size: v Error rate: (1 ~q) Error rate: v (1 - q)
(number of (per replication round (per replication round
Virus nt or bp) and per nt) and per genome)
RNA
Bacteriophage Qg 4,200 3x10% 1.3
Poliovirus type 1 7,400 3 x 10 0.2
Vesicular stomatitis virus 11,000 1x 10 1.1
Foot and mouth disease virus 8,400 1x 107 0.8
Influenza A virus 14,000 6x10° 0.8
Sendai virus 15,000 3x 107 0.5
HIV-1 {(AIDS virus) 10,000 1x10* 1.0
Avian myeloblastosis virus 7,000 5x 107 0.4
DNA
Bacteriophage M13 6,400 7x 107 4.6x10°
Bacteriophage vy 48,500 8 x 107 38x%x107°
Bacteriophage T4 166,000 2x10% 33x 107
Escherichia coli 4.7% 10° 7x 10°1° . 33 %107
Yeast {Saccharomyces cerevisiae) 13.8x 10° 3x 107 3.8x 107
Neurospora crassa 41.9 x 10° 1x107° 4.2 %107
Human 3x10° ~1071 ~3x 107

“Reprinted from reference 8 with permission from Elsevier Science.

' g;}Genetic algorithm” strategies
are widely used to rapidly calcu-
late solutions to complex prob-
lems

even in fields far removed from biology. Such strategies are now central to
many artificial intelligence systems, from database searching to machine
learning. “Genetic algorithm” strategies are widely used to rapidly calculate
solutions to complex problems (5, 12, 14).

This chapter will (i) review basic evolutionary theory, particularly as it
relates to viruses; (ii) summarize recent viral epidemics of global signifi-
cance; (iii) present a computational model of viral evolution; and (iv) offer
some thoughts about how future epidemics of emerging viruses might be pre-
dicted and prevented.

Evolutionary Theory

The nucleotide sequence of a viral genome can be thought of as an informa-
tion string of 10,000 bits with four altemative states (A, C, G, and U or T)
per bit. The total evolutionary potential for such a system is the universe of
all possible 10,000-bit strings. These can be hypothetically arranged in a
“sequence space” so that each string is adjacent to its 30,000 one-step-nearest
neighbors. The total dimension of this space is 4 to the 10,000th power, a
number that is greater than all atoms in the universe. Obviously, many
regions in this hypothetical RNA sequence space [for example, the fringe
region around a pure 10,000-poly(C) sequence] are out of bounds for replica-
tion. However, many regions of RNA sequence space do permit replication,
and within these there are local optima. These optima can be conceptualized
as peaks on a fitness landscape in nucleotide sequence space (25, 34).
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Similarly, evolution can be thought of as the process whereby sequence
space is explored, with successful variants colonizing the fitness peaks.
Because the mutation rate of RNA replication is so high, evolutionary time
for exploration of sequence space for RNA-based life can be measured in
weeks and years, compared to the millennia required for DNA-based life.
Rephrased, evolution of RNA life occurs on a scale that can be compre-
hended and studied within human dimensions. The disparity between rates
of RNA and DNA evolution, the difference in RNA and DNA “evolvabil-
ity,” probably accounts for the fact that most of the new emerging diseases
are caused by RNA viruses; RNA-based genomes have sufficient plasticity to
permit rapid host switching.

This high evolvability of RNA may also account for the fact that almost
all known arthropod-borne viruses (viruses that alternately replicate within
vertebrate and arthropod cells) have RNA genomes. Although there are
numerous DNA viruses of vertebrates and numerous DNA viruses of arthro-
pods, remarkably there is only a single known DNA arbovirus (African
swine fever virus) (24). It is likely that for most arthropod-borne viruses the
sequence space fitness peak for growth in arthropod cells is close to, but not
perfectly congruent with, that for growth in vertebrate cells, and mutation is
required to trampoline back and forth through sequence space between the
two host-specific optima.

Mutation alone may be insufficient to permit movement through some
regions of sequence space (9, 10, 19). By definition, even single-step muta-
tions from a local fitness optimum are less fit than their parents. Particularly
in rugged fitness landscapes, genomes only slightly removed from the local
optimum may be totally unfit, so that exploration of the surrounding space
becomes impossible. Recombination between genomes on separated fitness
optima permits such an “evolutionary broad-jumping” type of sequence
space exploration; recombinant progeny may fall on previously totally unex-
plored fitness peaks (18). Naturally occurring recombination (or reassort-
ment) has been closely studied in RNA viruses with segmented genomes
such as influenza virus. Recombination has also recently been shown to
occur commonly among HIV strains (2, 3). The role of recombination in
nature is less well studied for other RNA viruses, but convincing examples
have been found wherever they have been sought (1, 4).

The biological consequences of such recombination, whether by reassort-
ment of segmented genomes or by true recombination through crossing over,
may be the generation of novel variants with new epidemiological proper-
ties. For influenza, change by mutation, widely known as “drift,” is of minor
epidemiological significance, while change by recombination often results
in a “shift” with an epidemiological impact felt on a global scale (20). It is
now clear that “shifts” in influenza come about through recombination
(reassortment) of RNA sequences from bird and pig influenza viruses with

sequences from human viruses. Bird (and pig) influenza RNA explores cer-

tain regions of fitness space far from that occupied by human influenza RNA

2}’). Coinfection of a single host (the pig usually serves as the “mixing ves-
sel” for avian and human influenza viruses) allows widely divergent
ences to coinfect the same cell and recombine (30). Many such progeny

Evolution of RNA life occurs
on a scale that can be compre-
hended and studied within
human dimensions
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for HIV as it is for influenza

ecombination may be just as
dominant an evolutionary force

are nonviable and never reproduce, but occasionally a new variant emerges
(11, 31). The same model may be applicable to many other RNA viruses.
All RNA viruses apparently can and do recombine, but the epidemiological
significance of recombination is less clear. Recent studies of the nucleotide
sequences of HIV strains from around the world have shown that recombi-
nation may be just as dominant an evolutionary force for this virus as it is for
influenza (27, 28). Non-human primate lentiviruses may contribute to the
human HIV gene pool (17).

Existing RNA viruses occupy only a tiny fraction of the available RNA
sequence space. Clearly a dominant constraint is the ability of the proteins
encoded by the viral RNA to functionally interact with host cell con-
stituents. However, there are probably several other structural (protein/pro-
tein, protein/RNA, etc) constraints on sequence space exploration.

In addition, models from the new scientific field of “complexity” suggest
thar genomes in whole galaxies of sequence space may be inherently unfit
not because of protein structural constraints but because of deeper con-
straints on the evolvability of their informational content (18). Some
sequence sets may fail to evolve and remain frozen in sequence space (analo-
gous to a solid). Others may expand through sequence space too rapidly and
degenerate to chaos (analogous to a gas). If the concept of “life at the edge of
chaos” has merit, perhaps only certain regions of sequence space encode the
“liquid” information evolvability necessary to explore and then stably colo-
nize new fitness peaks.

RealViruses, Real Pandemics

In the past 30 years there have been at least seven “new” viruses that have
caused global epidemics involving millions of humans (Table 1.2). All of
the recent global pandemics have been of RNA viruses with an ability to
recombine or reassort genetic material between viruses. For the influenza A
viruses (H3N2 and HIN1) there is solid evidence that the new epidemic
strains arise through mixing of genes from animal influenza viruses with
genes from preexisting human influenza virus. For the retroviruses (HIV
and HTLV) there is suggestive evidence that these viruses crossed the
species barrier from non-human primates into humans. The recent pan-

Table 1.2 Recent viral pandemics (Ro >> 1) in human populations

Disease Year Location Family Virus

Influenza 1968 Hong Kong Orthomyxoviridae Influenza A (H3N2)
Hemorrhagic conjunctivitis 1969 Ghana Picornaviridae Enterovirus 70

Meningitis 1969 United States Picornaviridae - Enterovirus 71

Hemorrhagic conjunctivitis 1970 Singapore Picornaviridae Coxsackievirus A24/variant
Influenza 1977 Russia Orthomyxoviridae Influenza A (HIN1)

AIDS 1981 United States, Zaire Retroviridae HIV-1

Leukemia, [ymphoma 1982 Japan Retroviridae Human T-cell lymphotropic virus
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Table 1.3 Recent localized (Ro < 1) new viral epidemics in human populations

Disease Year Location Family Virus

Neuropsychosis 1985 Germany Paramyxoviridae Borna disease virus

AIDS-like 1986 West Africa Retroviridae HIV-2

Hemorrhagic fever 1989 Venezuela Arenaviridae Guanarito virus

Influenza 1993 Netherlands Orthomyxoviridae Influenza A virus (H3N2, avian)
Pulmonary syndrome 1993 Western United States Bunyaviridae Sin Nombre virus

Hemorrhagic fever 1995 Zaire Filoviridae Ebola virus

demic picornaviridae (enterovirus 70, enterovirus 71, and coxsackievirus
A24/variant) probably derived directly from preexisting human viruses, but
a genetic contribution from an animal picornavirus gene pool cannot be
ruled out.

Qutbreaks and epidemics of new viruses in humans are continually being
observed around the world. Some very recent examples are shown in Table
1.3; all are RNA viruses. As compared to the viruses causing global pan-
demics (above and Table 1.2), these viruses show no or only a limited capac-
ity for human-to-human transmission. For four of the six viruses shown in
Table 1.3, humans are known to become infected directly with a virus that is
native to animals. In one case (Borna) an animal reservoir is suspected, and
in one (Ebola) the reservoir is unknown.

New viral epidemics are also continually being observed around the world
in animal populations. Table 1.4 shows some very recent examples. All but
one of these recent epidemic viruses are RNA viruses; the canine parvovirus
is the only example of a new epidemic animal DNA virus. Four of these
viruses are thought to have arisen through interspecies transfer (canine par-
vovirus, lion paramyxovirus, dolphin paramyxovirus, equine paramyx-
ovirus), while the other two are thought to have arisen through mutation of
a virus already endemic in the species (pig coronavirus, chicken influenza
virus).

Collectively, these new epidemics demonstrate the ability of viruses in
many RNA virus families to cross species barriers where they can cause dis- These new epidemics demon-

ease and become serially transmitted within the new host species. strate the ability of viruses in
many RNA virus families to
cross species barriers

Table 1.4 Some important recent viral epidemics in animal populations

Host Disease Year Location Family ‘ Virus

Pox/pulmonary 1973 Russia Poxviridae Cowpox (rodent) virus

Influenza 1983 United States Orthomyxoviridae Influenza A virus (H5N2)
Respiratory 1984 Europe Coronaviridae Porcine respiratory coronavirus
Enteritis 1987 Worldwide Parvoviridae Canine parvovirus

Respiratory 1988 United States Paramyxoviridae Dolphin and porpoise morbillivirus
Encephaliris 1994 Tanzania Paramyxoviridae Canine disterper virus
Respiratory 1994 Australia Paramyxoviridae Equine morbillivirus

Hemorrhagic 1995 Australia Caliciviridae Rabbit hemorrhagic disease virus
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or the VIV computational
model we constructed an artifi-
cial genetic system

Virtual Viruses

My colleagues at the Navy Center for Applied Research in Artificial Intelli-
gence and ] have recently been working on a computational model of viral
evolution, a “virtual virus” that we call “VIV.” The effort to construct a
computer simulation of virus evolution was inspired by the observation that
the evolutionary strategy of HIV, a diploid virus with a high mutation rate
and a high recombination rate, was remarkably similar to the evolutionary
computation strategies known as “genetic algorithms” used for machine
learning and robotics.

Genetic algorithms (GAs) are heuristic learning (problem-solving) mod-
els based on principles drawn from natural evolution and selective breeding
(5, 12). In a typical GA a population of structures (a population of bit strings
or programs) is established that can be interpreted as a pool of candidare
solutions to the given problem. Competitive selection is employed to allow
these structures to reproduce, based on each structure’s fitness as a solution
to the given problem. Idealized genetic operators, such as mutarion or recom-
bination, are applied to the selected structures in order to create a new gen-
eration of structures. In many applications in optimization and search, these
features enable the genetic algorithm to rapidly improve the average fitness
of the population and to quickly identify the high-performance regions of
very complex search spaces (6, 13, 29).

For the VIV computational model we constructed an artificial genetic
system (33). In this system arbitrary “nucleotide” triplets encode English let-
ters rather than amino acids, and sequences are translated into words or
groups of words rather than into polypeptides or proteins. The standard tar-
get phenotype in VIV is the words “COREPROTEIN,” “POLYMERASE,”
and “ENVELOPE,” which can be present in any order along the string. Run-
on and overlapping reading frames are permitted. Fitness is assigned to each
string according to the encoded spelling score. Perfect spelling of all three
words is assigned a fitness of 1.0, while random gibberish is assigned a fitness
score of 0.0. Although redundancies and noncoding regions are not directly
scored, string brevity is rewarded with higher fitness. In a typical VIV simu-
lation experiment, a single population of 500 random strings of lengths dis-
tributed between 100 and 500 nucleotides is permitted to evolve for 2,000
generations. Evolutionary operators such as the frequency of mutation or
recombination are then systematically varied, and “adaptation curves”
(plots of population fitness per generation) are analyzed.

We have drawn several conclusions from our preliminary VIV simulations,
as follows: (i) the optimal point mutation rate is close to one mutation per
genome per replication cycle; (ii) when added to mutation, recombination in
any form speeds adaptation; (iii) homologous recombination is superior to ran-
dom crossover recombination; and (iv) adaptation speed increases with homol-
ogous recombination rates up to 0.4 recombination events per replication
cycle, but little more at higher recombination rates. These results suggest that
HIV, a real “diploid” virus with a measured mutation rate of about one muta-
tion per genome per replication cycle and a measured high recombination rate,
may search sequence space with near-optimal efficiency (16, 26, 32, 35).
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The basic VIV model can be modified to incorporate a variety of evolu-
tionary operators, such as genome segmentation, genomic secondary struc-
tures, insertions and deletions, and feedback loops and hypercycles. Such
studies are in progress.

Predicting and Preventing Viral Pandemics

Given the considerable attention focused on emerging diseases, it is striking
how little discussion there has been on how we, the human species, might
predict and prevent, rather than simply detect and react to, future pan-
demics. To do so requires a rational approach to risk assessment. [ propose
three criteria to identify the set of virus families that pose the greatest risk
for a new global pandemic.

The first criterion is the most obvious: recent pandemics in human his-
tory. Those viruses already proven to cause human pandemics are clearly
able to do so again. These would include the Orthomyxoviridae (influenza),
the Lentiviridae (HIV-1), and the Picornaviridae {enterovirus 70).

-The second criterion is proven ability to cause major epidemics in non-
human animal populations. Here a different but overlapping set of virus
families is identified, including the Orthomyxoviridae, the Paramyxoviridae,
and the Coronaviridae.

The third criterion (which may be less obvious) reflects the thesis that 1
have tried to build in this chaprer, thar intrinsic evolvability confers on a
virus the potential to emerge into and to cause pandemics in human popula-
tions. Virus families with proven high mutation rates and which have
genomic organizational features that foster recombination meet this crite-
rion. These include the Orthomyxoviridae, Retroviridae, Coronaviridae, and
Reoviridae.

Some of these viruses, particularly those like the Coronaviridae and the
related Arteriviridae, should be considered as serious threats to human
health. These are viruses with high evolvability and proven ability to cause
epidemics in animal populations.

Whence and when will new viruses emerge? Of the 68 virus genera that
are known to infect vertebrates, 47 are already known to infect humans. The
remaining 21 virus genera are thought to infect only non-human verte-
brates. Of these, 10 are large DNA viruses not likely to successfully cross
species into humans; 2 are small DNA viruses; and 3 are RNA viruses
known to infect only fish and fowl. This leaves six genera of RNA viruses
that routinely infect other mammals but are not known to infect humans.
Among these, the Arteriviridae (particularly simian hemorrhagic fever virus)
are particularly worrisome.

Serious consideration must also be given to the geographic location of
research laboratories for the study of emerging viruses (22). Two observa-
tions should guide the placement of study sites. First, viruses easily cross
species boundaries between closely related host species but are less able to do
so between more distantly related hosts: humans are more susceptible to
- viruses of monkeys than to viruses of fish. Second, for any given viral taxon

Lt is striking how little discussion
there has been on how we, the
human species, might predict
and prevent future pandemics




8

BURKE

"Evolution is a change . . .

the pool of viral variation is greatest in those geographic regions where host
variation is greatest. For these reasons, any effective global program to pre-
dict and prevent emerging viral pandemics should systematically study
viruses in those parts of the world where the number and diversity of mam-
malian species, and in particular the diversity of primate species, is the great-
est, such as the tropical rain forests of Africa and South America. The
current complete lack of sustained United States-supported research efforts
in these important regions should be corrected.

A Closing Thought

This chapter has presented a fairly abstract, conceptual approach to viral
evolution and emergence. Indeed, the skeptical reader might liken it to
William James’s view, offered over a century ago (7):

Evolution is a change

from a nohowish, untalkaboutable,
all-alikeness,

to a somehowish and in-general-talkaboutable,
not-all-alikeness,

by continuous

somethingelsifications and sticktogetherations.
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Figure 1.1 Representation of evolving bit strings in sequence space. Here the sequence space is shown only in two dimen-
sions, the x and y axes. For a string of length L, the strings would evolve through an L-dimensional sequence space, but this is
impossible to draw on a two-dimensional paper surface. Fitness is represented as the height on the z axis. In this example

populations of strings are colonizing several local fitness optima.
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Figure 1.2 Cartoon of the lentivirus phyloge-
netic tree, showing the relationship between
major virus groups. The dotted circles at nodes
represent branch points for which relationships
are not entirely certain. Viruses branching from
the bottom node are the lentiviruses of horses,
equine infectious anemia virus (EIAV); of cows,
bovine immunodeficiency viruses (BIV); of cats,
feline immunodeficiency virus (FIV); and of
goats and sheep, caprine arthritis encephalitis
virus (CAEV) and visna virus. Viruses from the
second node are the simian immunodeficiency
viruses (SIVs) of African green monkeys
(AGM), mandrills (MND), Syke’s monkeys
(SYK), sooty mangabeys (SM), and sabeus
monkeys (SB). The SIV of chimpanzees
branches from the next node along with the
HIV-1 outlier strains (HIV-Q) and the standard
genotypic variants of HIV-1, shown as letters A
through H. Diameter size for each variant is
roughly proportional to the genetic variation
within that genotype. HIV-2 is genetically very
similar to SIV-SM. Known recombinant
lentiviruses are shown as the juncture of two
arrows from their parent genotypes.
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Figure 1.3 “Learning curves” for evolving populations of strings in the virtual virus (VIV) model. Generations (replication
cycles) are shown on the x axis, and fitness (a value based on the spelling score and adjusted for string length; see text) is
shown on the y axis. In this experiment the population sizes = 500; generations = 2,000; initial genome lengths = 100 to 500;
and mutation rate = 0.003 per site per replication. Curve shows a population replicating with homologous recombination at
every replication.
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